Studies of Water-in-Oil Emulsions: Energy and Work Threshold for Emulsion Formation Merv Fingas and Ben Fieldhouse Emergencies Science Division Environmental Technology Centre Environment Canada Ottawa, Ontario E mail: Fingas Merv@etc.ec.gc.ca James Lane and Joseph Mullin U.S. Minerals Management Service Herndon, Virginia ### Abstract This paper summarizes studies to determine the energy and work onset of water-in-oil formation. The total energy applied to the oil/water in the emulsion formation apparatus was varied from a minimum to a maximum value of approximately 50 to 600,000 ergs (equivalent to 1 x 10⁻⁶ to 6 x 10⁻² Joules). Work was varied from 1 to 5123 J.s. It was found that although a minimum energy threshold is necessary for most emulsion formation, only work correlates with the stability value. This has clear implications for the formation of emulsions at sea, where a given energy level corresponding to turbulent energy at sea would require a period of time before a given water-in-oil state would be produced. Four, clearly-defined states of water-in-oil have been characterized by a number of measurements and by their visual appearance, both on the day of formation and one week later and in one case of some samples, one year later. It was found that one year later, the value of stability was generally slightly less than at the time of formation, but the stability class did not change. It has also been noted that there is a progression in the formation of the emulsions. At the onset of agitation, a course mixture appearing like a sponge or foam, is formed. If a stable emulsion will be formed, this occurs quickly and never reverts, at least not with the oils in this study. A meso-stable emulsion will form after about 20 minutes of agitation at low energy. In some cases, the meso-stable emulsion can change to a less-stable 3-way, water-in-oil-in water emulsion. Most often a meso-stable emulsion remains as meso-stable. The coarse mixture usually remains as such until mixing ceases, however, in the case of some oils it also form a 3-way emulsion. ## 1.0 Introduction Studies in the past year showed that the energy threshold for the onset of the two states known as stable emulsion and entrained water, is usually very low, 300 to about 1500 ergs, corresponding to a rotational rate in the formation apparatus of about 1 to 3 rpm (Fingas et al., 1999). It was shown that for the one oil type, Bunker C, which forms an entrained water state, that there is no increase in stability with increasing energy input, after the initial formation point. The oil that forms a mesostable emulsion, Prudhoe Bay, showed a similar tendency in that after the energy onset, which occurs at a high level of about 25,000 ergs, there is no apparent increase in stability. Both oils that form stable emulsions, Arabian Light and Sockeye showed an increasing stability with increasing energy, although the rate of increase was gradual with increasing energy. These stable emulsions actually undergo an increase in viscosity over time. Monitoring of these emulsions has been performed for as long as 6 years in the laboratory. Increasing viscosity may be caused by increasing alignment of asphaltenes at the oil-water interface (McLean and Kilpatrick, 1997a, 1997b; Sjöblom and Førdedal, 1996). An important aspect of emulsions that has not been studied extensively to date is the kinetics of emulsion formation and the energy levels associated with the formation of emulsions. Such information is needed to understand the emulsification process and to model the process. The study presented last year, initiates the subject (Fingas et al., 1999). This paper reports on further experiments to examine the kinetics and the formation energy of emulsions. It is important to note that turbulent energy is felt to be the most important form of energy related to emulsion formation. Turbulent energy could not be measured in this apparatus, so the total energy was used as an estimate of the energy available for emulsion formation. # 2.0 Experimental Water-in-oil emulsions were made in a rotary agitator and then the rheological characteristics of these emulsions studied over time. Oils were taken from the storage facilities at the Emergencies Science Division. Properties of these oils are given in standard references (Jokuty et al., 1999). This paper reports on two series of experiments, one to measure the work and energy threshold and a second set of experiments to measure the properties and stability of the emulsions formed in the study one year ago. The energy threshold measurements were conducted by varying the rotational rate, and hence the energy of the apparatus used to make the emulsions. Work was varied by using different time periods of agitation at the same rotational energy. Analysis of the emulsions was conducted using rheological measurements as described herein and standard visual observations. Emulsion Formation General - Emulsions were made in an end-over-end rotary mixer (Associated Design). The apparatus was located in a temperature controlled cold room at a constant 15 degrees Celsius. The mixing vessels were 2.2 L FLPE wide-mouthed bottles (Nalge). The mixing vessels were approximately one-quarter full, with 600 mL salt water (3.3% w/v NaCl) and 30 mL of the sample crude oil or petroleum product. The vessels were mounted into the rotary mixer, and allowed to stand for several hours (usually three) to thermally equilibrate. The vessels were then rotated for 12 hours at a rate between 1 and 55 rpm. The resulting emulsions were then collected into Fleaker jars, covered, and stored in the same 15 degree cold room. Analysis was performed on the day of collection a short time after formation. Emulsion Formation - Effect of Work - For the first study, water-in-oil emulsions were formed in 2.2-litre fluorinated vessels on an end-over-end rotary mixer. 600 mL of salt water (3.3% w/v NaCl) is placed in each mixing vessel and allowed to stand in a temperature controlled cold room at 15°C overnight. 30 mL of oil is added to each vessel for a 1:20 oil: water ratio. The exception was Bunker C, which was adjusted to 60 mL. This was due to the low water content of Bunker C emulsions, which prematurely depletes the supply of emulsion as a result of successive sampling. The vessels were sealed and placed in the rotary mixer such that the cap of each mixing vessel follows, rather than leads, the direction of rotation. The rotary mixer was kept in a temperature controlled cold room at 15°C. The entire system was allowed to thermally equilibrate for a period of at least 30 minutes. The mixing was initiated at the rotational rate indicated for each experiment, either 10, 30 or 50 RPM. The rotation was stopped at each of the indicated sampling times, the sample characteristics observed and sufficient sample collected to perform water content analysis and rheological measurements. Rotation and timing was then resumed. The test period ran for a total of 24 hours or for the specified time period. Rheology - The following apparatuses were used for rheological analysis: Haake RS100 RheoStress rheometer, IBM-compatible PC with RheoStress RS Ver. 2.10 P software, 35 mm parallel plates with corresponding base plates, clean air supply at 40 p.s.i., and a circulating bath maintained at 15.0 degrees Celsius. Analysis was performed on a sample spread onto the base plate and raised to 2.00 mm from the measuring plate, with the excess removed using a teflon spatula. This was left for 15 minutes to thermally equilibrate at 15 degrees Celsius. Forced Oscillation - A stress sweep at a frequency of I reciprocal second was performed first to determine the linear viscoelastic range (stress independent region) for frequency analysis. This also provides values for the complex modulus, the elasticity and viscosity moduli, the low shear dynamic viscosity, and the $\tan(\delta)$ value. A frequency sweep was then performed at a stress value within the linear viscoelastic range, ranging from 0.04 to 40 Hz. This provides the data for analysis to determine the constants of the Ostwald-de-Waele equation for the emulsion. Complex Modulus - The complex modulus is a measure of the overall resistance of the material to flow under an applied stress, in units of force per unit area. This combines the elements of viscosity and elasticity for a viscoelastic material such as water-in-oil emulsions. The complex modulus is measured on an RS100 RheoStress rheometer using a 35 mm plate-plate geometry. A stress sweep is performed in the range 25 to 1,000,000 mPa in the oscillation mode at a frequency of 1 Hz. The resulting complex modulus in the linear portion of the range is reported. Viscosities - The apparent dynamic viscosity was determined on the plateplate apparatus as well in some cases, and corrected for their non-Newtonian behaviour using the Weissenberg equation. A shear rate of 1 reciprocal second was employed for a period of one minute, without ramping. For characterization of apparent viscosity, the concentric cylinder geometry was used. This consisted of the Haake Roto visco RV20 with M5 measuring system, Haake Rheocontroller RC20 and PC with dedicated software package Roto Visco 2.2. The spindle and cup used were the SVI spindle and SV cup. The shear rate was one reciprocal second. The viscometer was operated with the following ramp times: one minute to target shear rate (1/s); one minute at target shear rate (1/s). The temperature was maintained at 15 degrees Celsius. Fifteen minutes was allowed for the sample to thermally equilibrate. Water Content - A Metrohm 701 KF Titrino Karl-Fischer volumetric titrator and Metrohm 703 Ti Stand were used. The reagent was Aquastar Comp 5 and the solvent, 1:1:2 Methanol:Chloroform:Toluene. The titre was standardized according to the written procedure and the solvent blanked. The emulsion sample was stirred to achieve a relatively homogeneous mixture. A 1 mL
plastic syringe was filled with emulsion, while avoiding free water pockets present in the sample. All but 0.1 mL of sample was ejected. This removed most of the free water from the more viscous emulsion. The sample syringe was weighed and injected into the reaction vessel, being careful the sample went into the solution and not onto the vessel walls. The syringe was reweighed and the difference of weight entered into the titrator. Titration was then initiated and then weight percentage of water was displayed. # 3.0 Energy and Work Calculations The general layout of the rotational device is shown in Figure 1. Figure 1 Diagram of the Emulsion Formation Device The simple way to calculate the total energy exerted on the oil/water in the device is to calculate the total kinetic energy of the system. The total kinetic energy in each bottle is given by: $KE = \frac{1}{2} MV^2$ (1) Where: KE is the energy in ergs M is the mass in grams, here approximately 620 g of water and oil V is the velocity in cm/s which is $2\pi r$ - which is rpm/60 X 7.5 cm Kinetic energy by this formula is then 196 x rpm² ergs. Ergs were used in this study because they are a much more convenient unit than the SIU Joules at these low energy levels. This simple formulation will be used to assign an energy level to each rotational velocity. Again, it is important to note that the energy estimated here is the total energy input to the system, and not turbulent energy which is the prime factor in emulsion formation. Work can be defined in J.s which is the energy in ergs times 10⁻⁷ times the time in seconds. # 4.0 Results and Discussion The first part of this study involved measuring the emulsion formation thresholds at various rotational energies and various times. The rheological data associated with the energy and work threshold experiments are given in Table 1. The second column of Table 1 is the rotational rate of the formation vessel. The third column is the time of mixing until the measurement was taken. The fourth column is the complex modulus which is the vector sum of the viscosity and elasticity. The fifth column gives the water content of the emulsion. The sixth column shows stability of the emulsion which is the complex modulus divided by the starting oil viscosity (Fingas et al. 1998). The 'coarse' is a new term to refer to a sponge-like material which is unstable at the time and is not an emulsion in the true sense of the word. The eighth column gives the work applied to the emulsions in J.s. Observations were made on the appearance of the emulsions and were used to classify the emulsions. All of the stable emulsions appeared to be stable and remained intact over seven days in the laboratory. All of the meso-stable emulsions broke within three days into water, free oil and emulsion. The emulsion portion of these break-down emulsions appears to be somewhat stable, although separate studies on this portion has not been performed because of the difficulty in separating these portions from the oil and water. All entrained water appeared to have larger suspended water droplets initially. The appearance of non-stable water in oil was just that, the oil appeared to be unchanged and a water layer was clearly visible. The appearance of the oil/water through the process is very important in terms of understanding the process. Table 2 gives the observations reported for each series of experiments. It has also been noted that there is a progression in the formation of the emulsions. At the onset of agitation, a course mixture appearing like a sponge or foam, is formed. If a stable emulsion will be formed, this occurs quickly and never reverts, at least not with the oils in this study. A meso-stable emulsion will form after about 20 minutes of agitation at low energy. In some cases, the meso-stable emulsion can change to a less stable 3-way, water-in-oil-in water emulsion. Most often a mesoemulsion would remain as meso-stable. The coarse mixture often remains as such. In summary, a 'coarse mixture' is often formed near the beginning before any other type of water-in-oil state is observed. Stable emulsions, usually appear very rapidly and the coarse mixture is sometimes not observed, probably because it is only apparent for a very short period of time. Mesostable emulsions appear about 20 minutes later and may stay as mesostable emulsions, but some oils, under high energy, may break back down into a coarse mixture, from whence they came. The coarse mixture may convert into a 3-way water-in-oil-in-water emulsion which is not stable for longer than about one day until mixing ceases. The 3-way emulsions retain some of the characteristics of the emulsion from which it is formed, either a meso-stable or coars mixture. A 3-way emulsions do not convert into other water-in-oil states and break down after mixing ceases. The stability and work of formation are plotted for the four oils in Figure 2. The stability in these figures is the complex modulus divided by the starting oil viscosity (Fingas et al. 1998). The latter reference traces the development of this index. In summary, the 'stability', as here defined, was found to be the only single parameter that could be used to describe the emulsions mathematically. Furthermore, | Sockeye Company | Table ' | Mixing | Time | of Kinetic
Complex | Water | Stability | Energy | Work | |--|---------|-----------------------|--
--|----------|--|--------------------------------|---| | Sockeye 10 10 10 9.3E+03 73.6 210 19600 1 20 2.5E+04 79.8 540 19600 1 20 3.14E+05 83.9 3160 19600 4 60 1.7E+05 89.3 3870 19600 7 120 2.7E+05 90.1 6070 19600 14 360 3.8E+05 89.8 8500 19600 42 1440 9.7E+05 88.2 21440 19600 169 30 10 1.3E+05 85.7 920 176400 11 20 3.0E+05 85.7 920 176400 127 360 3.8E+05 86.7 9890 176400 127 360 5.9E+05 87.8 13110 176400 127 360 5.9E+05 88.3 17640 55 10 2.7E+05 86.7 9890 176400 127 360 5.9E+05 87.8 13110 176400 127 360 5.9E+05 88.3 17640 592900 176400 127 360 120 1.2E+06 86.1 278 278 278 278 278 278 278 27 | Oil | | | Modulus | | (=·1) | /a1 | (1-) | | 10 10 9.3E-03 73.6 210 19600 1 20 2.5E+04 79.8 540 19600 2 30 1.4E+05 83.9 3160 19600 7 120 2.7E+05 90.1 6070 19600 7 120 2.7E+05 90.1 6070 19600 14 360 3.8E+05 89.8 8500 19600 42 1440 9.7E+05 88.2 21440 19600 169 1440 9.7E+05 88.2 21440 19600 169 14 20 3.0E+05 85.7 6670 178400 11 20 3.0E+05 85.7 9220 178400 32 60 3.8E+05 86.7 9220 178400 32 60 3.8E+05 86.7 9890 178400 32 1440 8.0E+05 87.9 17670 176400 1524 4.7E+06 85.6 41330 592900 107 60 1.2E+06 85.6 41330 592900 127 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 120 1.9E+06 85.6 41330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 1440 4.7E+06 82.8 103330 592900 5123 1440 7.9E+05 93.5 6110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 14 360 5.2E+05 91.8 23640 19600 14 360 5.2E+05 91.8 23640 19600 14 20 2.3E+05 92.2 10230 176400 32 60 8.6E+05 91.8 39990 176400 32 60 8.6E+05 91.8 39990 176400 32 60 8.6E+05 91.8 39990 176400 32 60 8.6E+05 91.7 30000 176400 32 1440 8.2E+05 91.8 39990 176400 32 60 8.6E+05 91.7 30000 176400 32 1440 8.2E+05 91.2 37050 176400 127 36 6.6E+05 91.7 30000 176400 32 1440 8.2E+05 91.2 37050 176400 127 36 6.6E+05 91.7 30000 176400 32 1440 8.2E+05 91.2 37050 176400 1524 1440 8.2E+05 91.2 23860 592900 71 30 5.8E+05 90.9 25860 107 60 6.5E+05 90.9 25860 592900 1281 | | | | (mra) | (70 W/W) | (5) | (ergs) | (3.5) | | 20 2.5E+04 79.8 540 19600 2 30 1.4E+05 83.9 3160 19600 4 60 1.7E+05 89.3 3870 19600 7 120 2.7E+05 90.1 6070 19600 14 360 3.8E+05 89.8 8500 19600 42 1440 9.7E+05 88.2 21440 19600 169 30 10 1.3E+05 85.1 2790 176400 11 20 3.0E+05 85.7 6670 176400 21 30 4.2E+05 85.7 9220 176400 32 60 3.8E+05 86.1 8330 176400 42 120 4.5E+05 86.7 9890 176400 32 360 5.9E+05 87.8 13110 176400 361 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 38 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 1281 120 1.9E+08 85.6 41330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 7 120 3.7E+05 92.1 16820 19600 44 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 33640 19600 42 1440 7.9E+05 91.7 36580 19600 169 30 10 5.5E+04 82.9 2500 176400 32 60 8.6E+05 91.8 39090 176400 21 30 5.1E+05 92.0 23180 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35800 19600 169 35 10 5.5E+05 91.0 25680 592900 71 30 5.8E+05 91.2 37050 176400 1524 | Sockey | | 40 | 0.95+03 | 72.0 | 240 | 40000 | | | 30 1.4E+05 83.9 3160 19600 4 60 1.7E+05 89.3 3870 19600 7 120 2.7E+05 90.1 6070 19600 14 360 3.6E+05 88.8 8500 19600 42 1440 9.7E+05 88.2 21440 19600 169 30 10 1.3E+05 85.1 2790 176400 11 20 3.0E+05 85.7 6670 176400 21 30 4.2E+05 85.7 9220 176400 32 60 3.8E+05 86.1 8330 176400 64- 120 4.5E+05 86.7 9890 176400 1524 36 5.9E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 38 20 6.6E+05 84.6 14670 592900 71 30 7.9E+06 85.6 41330 592900 107 60 1.2E+06 85.6 41330 592900 123 120 1.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570
19600 1 20 3.7E+04 83.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 12 30 5.E+05 91.8 39090 176400 32 60 8.6E+05 91.8 39090 176400 32 60 8.6E+05 91.8 39090 176400 32 60 8.6E+05 91.8 39090 176400 127 360 6.6E+05 91.8 39090 176400 32 60 8.6E+05 91.8 39090 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35830 592900 71 30 5.8E+05 90.9 23860 592900 107 60 6.5E+05 91.0 25680 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.0 25680 592900 123 120 6.4E+05 90.9 26360 592900 123 120 6.4E+05 90.0 38900 592900 1281 | | 10 | | | | | | | | 60 1.7E+05 89.3 3870 19600 7 120 2.7E+05 90.1 6070 19600 14 360 3.8E+05 89.8 8500 19600 42 1440 9.7E+05 88.2 21440 19600 169 30 10 1.3E+05 85.1 2790 176400 11 20 3.0E+05 85.7 6670 176400 21 30 4.2E+05 85.7 9220 176400 32 60 3.8E+05 86.1 8330 176400 64 120 4.5E+05 86.7 9890 176400 31 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 36 20 6.6E+05 84.6 14670 592900 71 30 7.9E+06 85.6 41330 592900 127 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 149 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 91.8 23640 19600 42 140 7.9E+05 91.7 35680 19600 149 30 5.E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 11 20 3.8E+05 91.2 37050 176400 1524 | | | | | | | | | | 120 2.7E+05 90.1 6070 19600 14 360 3.8E+05 89.8 8500 19600 42 1440 9.7E+05 88.2 21440 19600 169 30 10 1.3E+05 85.1 2790 176400 11 20 3.0E+05 85.7 6670 176400 21 30 4.2E+05 85.7 9220 176400 32 60 3.8E+05 86.1 8330 176400 64- 120 4.5E+05 86.7 9890 176400 127 360 5.9E+05 87.8 13110 176400 1524 55 10 2.7E+05 82.2 6000 592900 38 20 6.6E+05 84.6 14670 592900 71 30 7.9E+06 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+05 83.3 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+05 93.5 6110 19600 4 60 1.3E+05 93.5 6110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 127 360 8.6E+05 91.8 39090 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 23180 176400 32 60 8.6E+05 91.8 39090 176400 127 380 6.6E+05 91.7 30000 176400 127 380 6.6E+05 91.8 39090 176400 127 380 6.6E+05 91.7 30000 176400 32 60 8.6E+05 91.7 30000 176400 1524 | | | | | | | | | | 360 3.8E+05 89.8 8500 19600 42 1440 9.7E+05 88.2 21440 19600 169 30 10 1.3E+05 85.7 21440 19600 11 20 3.0E+05 85.7 6670 176400 21 30 4.2E+05 85.7 9220 176400 32 60 3.8E+05 86.1 8330 176400 64 120 4.5E+05 86.7 9890 176400 127 360 5.9E+05 87.8 13110 176400 381 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 38 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 582900 427 380 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 4 60 1.3E+05 93.5 6110 19600 14 360 5.2E+05 91.8 23640 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 36680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23160 176400 32 60 8.6E+05 91.7 30000 176400 127 380 6.6E+05 91.8 39090 176400 127 380 6.6E+05 91.7 30000 176400 32 60 8.6E+05 91.7 30000 176400 32 60 8.6E+05 91.7 30000 176400 32 60 6.5E+05 91.2 37050 176400 1524 | | | | | | | | | | 30 | | | | | | | | | | 30 | | | | | | | | | | 20 3.0E+05 85.7 6670 176400 21 30 4.2E+05 85.7 9220 176400 32 60 3.8E+05 86.1 8330 176400 64 120 4.5E+05 86.7 9890 176400 127 360 5.9E+05 87.8 13110 176400 381 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 36 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 427 360 2.9E+06 83.5 63330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.0 23180 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 8.6E+05 91.8 39090 176400 127 360 8.6E+05 91.8 39090 176400 127 360 8.6E+05 91.7 30000 176400 127 360 8.6E+05 91.8 39090 176400 127 360 8.6E+05 91.8 39090 176400 127 360 6.6E+05 91.7 30000 176400 127 360 6.6E+05 91.3 29320 592900 71 30 5.8E+05 90.9 23860 592900 71 30 5.8E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 1281 | | | | | | | | | | 30 4.2E+05 85.7 9220 176400 32 60 3.8E+05 86.1 8330 176400 64 120 4.5E+05 86.7 9890 176400 127 360 5.9E+05 87.8 13110 176400 381 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 36 20 6.6E+05 84.6 14670 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 36230 176400 127 360 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35630 176400 127 360 8.6E+05 91.7 30000 176400 32 60 8.6E+05 91.7 30000 176400 32 60 8.6E+05 91.7 30000 176400 127 360 8.6E+05 91.7 30000 176400 32 60 8.6E+05 91.8 39090 176400 127 360 8.6E+05 91.7 30000 176400 32 60 8.6E+05 91.7 30000 176400 32 60 8.6E+05 91.7 30000 176400 127 360 8.6E+05 91.0 25680 592900 71 30 5.8E+05 90.9 23860 592900 71 30 5.8E+05 90.9 23860 592900 107 60 6.5E+05 91.3 29320 592900 1281 | | 30 | 10 | 1.3E+05 | 85.1 | 2790 | 176400 | 11 | | 60 3.8E+05 86.1 8330 176400 64- 120 4.5E+05 86.7 9890 176400 127- 360 5.9E+05 87.8 13110 176400 381- 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 36- 20 6.6E+05 84.6 14670 592900 71- 30 7.9E+05 85.3 17440 592900 107- 60 1.2E+06 86.1 25780 592900 107- 60 1.2E+06 86.1 25780 592900 107- 300 2.9E+06 83.5 63330 592900 1281- 120 1.9E+06 83.5 63330 592900 1281- 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1- 20 3.7E+04 86.6 2110 19600 4- 60 1.3E+05 93.5 6110 19600 4- 60 1.3E+05 93.5 6110 19600 4- 140 360 5.2E+05 91.8 23640 19600 14- 360 5.2E+05 91.8 23640 19600 14- 360 5.2E+05 91.8 23640 19600 169- 30 10 5.5E+04 82.9 2500 176400 11- 20 2.3E+05 92.0 23180 176400 21- 30 5.1E+05 92.0 23180 176400 21- 30 5.1E+05 92.0 23180 176400 21- 30 5.1E+05 92.0 35230 176400 127- 360 8.6E+05 91.8 39090 176400 127- 360 8.6E+05 91.7 30000 176400 32- 40 8.2E+05 91.2 37050 176400 127- 360 8.6E+05 91.7 30000 176400 381- 1440 8.2E+05 91.0 26860 592900 71- 30 5.8E+05 90.9 23860 592900 71- 30 5.8E+05 90.9 23860 592900 71- 30 5.8E+05 91.0 26860 592900 71- 30 5.8E+05 91.0 26860 592900 107- 60 6.5E+05 91.3 29320 592900 1281 | | | 20 | 3.0E+05 | 85.7 | 6670 | 176400 | | | 120 4.5E+05 86.7 9890 176400 127 360 5.9E+05 87.8 13110 176400 381 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 36 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 427 360 2.9E+06 83.5 63330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 14 360 5.2E+05 91.8 23640 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.0 2180 176400 21 30 5.1E+05 92.0 23180 176400 21 30 5.1E+05 92.0 35230 176400 21 30 5.1E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.0 25680 592900 71 30 5.8E+05 90.9 23860 592900 107 60 6.5E+05 91.0 25680 592900 176 60 6.5E+05 91.3 29320 592900 107 60 6.5E+05 91.0 26860 592900 107 60 6.5E+05 91.0 28860 592900 213 120 6.4E+05 91.0 28860 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 91.3 29320 592900 1281 | | | 30 | 4.2E+05 | | | 176400 | 32 | | 360 5.9E+05 87.8 13110 176400 381 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 36 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 36680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 127 360 6.6E+05 91.7 30000 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900
213 120 6.4E+05 91.0 28860 592900 213 120 6.4E+05 91.0 28860 592900 213 120 6.4E+05 91.0 28860 592900 213 | | | 60 | 3.8E+05 | | 8330 | 176400 | | | 1440 8.0E+05 87.9 17670 176400 1524 55 10 2.7E+05 82.2 6000 592900 36 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 427 360 2.9E+06 83.5 63330 592900 427 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 36230 176400 127 360 6.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.2 37050 176400 1524 | | | | | | | TO THE RESERVE OF THE PARTY OF | 10 mm | | 55 10 2.7E+05 82.2 6000 592900 36 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 85.6 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 76 30 5.8E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 1281 | | | | | | ALL STREET, ST | | TOTAL STREET, | | 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 380 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 123 120 6.4E+05 91.0 28860 592900 123 | | | 1440 | 8.0E+05 | 87.9 | 17670 | 176400 | 1524 | | 20 6.6E+05 84.6 14670 592900 71 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 380 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 123 120 6.4E+05 91.0 28860 592900 123 | | 55 | 10 | 2.7E+05 | 82.2 | 6000 | 592900 | 36 | | 30 7.9E+05 85.3 17440 592900 107 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39990 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 1281 | | | | | | | | | | 60 1.2E+06 86.1 25780 592900 213 120 1.9E+06 85.6 41330 592900 427 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 1281 | | | The control of co | | | | 592900 | | | 360 2.9E+06 83.5 63330 592900 1281 1440 4.7E+06 82.8 103330 592900 5123 Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 169 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 71 30 5.8E+05 91.0 28860 592900 213 120 6.4E+05 91.0 28860 592900 213 120 6.4E+05 91.0 28860 592900 1281 | | | | | | | | | | Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 7 120 3.7E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 21 30 5.1E+05 92.0 23180 176400 21 30 5.1E+05 92.0 23180 176400 127 360 6.6E+05 91.7 3000 176400 127 360 6.6E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 36 20 5.7E+05 91.0 25680 592900 71 30 5.8E+05 90.9 23860 592900 71 30 5.8E+05 90.9 23860 592900 213 120 6.4E+05 91.0 28860 592900 1261 | | | 120 | 1.9E+06 | 85.6 | 41330 | 592900 | 427 | | Point Arguello Light 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 7 120 3.7E+05 93.5 6110 19600 14 360 5.2E+05 91.8 23640 19600 149 360 5.2E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 21 30 5.1E+05 92.0 23180 176400 64 120 7.8E+05 91.8 39090 176400 176 | | | 360 | 2.9E+06 | 83.5 | 63330 | 592900 | 1281 | | 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 91.0 28860 592900 107 | | | 1440 | 4.7E+06 | 82.8 | 103330 | 592900 | 5123 | | 10 10 1.3E+04 78.5 570 19600 1 20 3.7E+04 83.7 1680 19600 2 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 91.0 28860 592900 107 | Point A | rauello Liat | nt | | | | | | | 30 4.7E+04 86.6 2110 19600 4 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7
35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 91.0 25680 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 91.0 28860 592900 1281 | | Details of the second | | 1.3E+04 | 78.5 | 570 | 19600 | 1 | | 60 1.3E+05 93.5 6110 19600 7 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 91.0 25680 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 91.0 28860 592900 1281 | | | 20 | 3.7E+04 | 83.7 | 1680 | 19600 | 2 | | 120 3.7E+05 92.1 16820 19600 14 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 91.0 25680 592900 71 30 5.8E+05 91.3 29320 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 90.5 39090 592900 1281 | | | 30 | 4.7E+04 | 86.6 | 2110 | 19600 | 4 | | 360 5.2E+05 91.8 23640 19600 42 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 36 20 5.7E+05 91.0 25680 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 90.5 39090 592900 1281 | | | 60 | 1.3E+05 | 93.5 | 6110 | 19600 | 7 | | 1440 7.9E+05 91.7 35680 19600 169 30 10 5.5E+04 82.9 2500 176400 11 20 2.3E+05 92.2 10230 176400 21 30 5.1E+05 92.0 23180 176400 32 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 71 30 5.8E+05 91.0 25680 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 90.5 39090 592900 1281 | | | 120 | 3.7E+05 | 92.1 | 16820 | 19600 | | | 30 | | | 360 | 5.2E+05 | | The second secon | 19600 | 42 | | 20 2.3E+05 92.2 10230 176400 21
30 5.1E+05 92.0 23180 176400 32
60 8.6E+05 91.8 39090 176400 64
120 7.8E+05 92.0 35230 176400 127
360 6.6E+05 91.7 30000 176400 381
1440 8.2E+05 91.2 37050 176400 1524
55 10 5.3E+05 90.9 23860 592900 36
20 5.7E+05 91.0 25680 592900 71
30 5.8E+05 90.9 26360 592900 107
60 6.5E+05 91.3 29320 592900 213
120 6.4E+05 91.0 28860 592900 427
360 8.6E+05 90.5 39090 592900 1281 | | | 1440 | 7.9E+05 | 91.7 | 35680 | 19600 | 169 | | 20 2.3E+05 92.2 10230 176400 21
30 5.1E+05 92.0 23180 176400 32
60 8.6E+05 91.8 39090 176400 64
120 7.8E+05 92.0 35230 176400 127
360 6.6E+05 91.7 30000 176400 381
1440 8.2E+05 91.2 37050 176400 1524
55 10 5.3E+05 90.9 23860 592900 36
20 5.7E+05 91.0 25680 592900 71
30 5.8E+05 90.9 26360 592900 107
60 6.5E+05 91.3 29320 592900 213
120 6.4E+05 91.0 28860 592900 427
360 8.6E+05 90.5 39090 592900 1281 | | 30 | 10 | 5.5E+04 | 82.9 | 2500 | 176400 | 11 | | 60 8.6E+05 91.8 39090 176400 64 120 7.8E+05 92.0 35230 176400 127 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 36 20 5.7E+05 91.0 25680 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 90.5 39090 592900 1281 | | | 20 | 2.3E+05 | 92.2 | | 176400 | | | 120 7.8E+05 92.0 35230 176400 127
360 6.6E+05 91.7 30000 176400 381
1440 8.2E+05 91.2 37050 176400 1524
55 10 5.3E+05 90.9 23860 592900 36
20 5.7E+05 91.0 25680 592900 71
30 5.8E+05 90.9 26360 592900 107
60 6.5E+05 91.3 29320 592900 213
120 6.4E+05 91.0 28860 592900 427
360 8.6E+05 90.5 39090 592900 1281 | | | 30 | 5.1E+05 | 92.0 | 23180 | 176400 | 32 | | 360 6.6E+05 91.7 30000 176400 381 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 36 20 5.7E+05 91.0 25680 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 90.5 39090 592900 1281 | | | 60 | 8.6E+05 | 91.8 | 39090 | 176400 | | | 1440 8.2E+05 91.2 37050 176400 1524 55 10 5.3E+05 90.9 23860 592900 36 20 5.7E+05 91.0 25680 592900 71 30 5.8E+05 90.9 26360 592900 107 60 6.5E+05 91.3 29320 592900 213 120 6.4E+05 91.0 28860 592900 427 360 8.6E+05 90.5 39090 592900 1281 | | | 120 | 7.8E+05 | 92.0 | 35230 | 176400 | | | 55 10 5.3E+05 90.9 23860 592900 36
20 5.7E+05 91.0 25680 592900 71
30 5.8E+05 90.9 26360 592900 107
60 6.5E+05 91.3 29320 592900 213
120 6.4E+05 91.0 28860 592900 427
360 8.6E+05 90.5 39090 592900 1281 | | | 360 | 6.6E+05 | 91.7 | | | | | 20 5.7E+05 91.0 25680 592900 71
30 5.8E+05 90.9 26360 592900 107
60 6.5E+05 91.3 29320 592900 213
120 6.4E+05 91.0 28860 592900 427
360 8.6E+05 90.5 39090 592900 1281 | | | 1440 | 8.2E+05 | 91.2 | 37050 | 176400 | 1524 | | 20 5.7E+05 91.0 25680 592900 71
30 5.8E+05 90.9 26360 592900 107
60 6.5E+05 91.3 29320 592900 213
120 6.4E+05 91.0 28860 592900 427
360 8.6E+05 90.5 39090 592900 1281 | | 55 | 10 | 5.3E+05 | 90.9 | 23860 | 592900 | 36 | | 30 5.8E+05 90.9 26360 592900 107
60 6.5E+05 91.3 29320 592900 213
120 6.4E+05 91.0 28860 592900 427
360 8.6E+05 90.5 39090 592900 1281 | | | | | | | | | | 60 6.5E+05 91.3 29320 592900 213
120 6.4E+05 91.0 28860 592900 427
360 8.6E+05 90.5 39090 592900 1281 | | | | | | | | | | 360 8.6E+05 90.5 39090 592900 1281 | | | | The Control of Co | | | | 213 | | 에게 있는데 있는데 말이는데 가장이는데 얼마나요? 집에 살이 없게 하게 그리는 때문에 가장에 내려 보는데 없었다. 나는데 나를 하는데 살아 없는데 살아 없는데 살아 없었다. | | | 120 | 6.4E+05 | | 28860 | 592900 | | | 1440 2.1E+06 89.8 97500 592900 5123 | | | | | | | | | | | | | 1440 | 2.1E+06 | 89.8 | 97500 | 592900 | 5123 | | Table 1 | Mixing | Time | of Kinetic
Complex | Water | Stability | Energy | Work | |---------|------------|-----------|--|--------------|--------------------|--------|-------| | Oil | Energy | | Modulus
(mPa) | | (s ⁻¹) | (ergs) | (J.s) | | Amblen | | | (1111-4) | (76 W/W) | (9) | (cigs) | (0.3) | | Arabian | 10 | 10 | NM | 73.4 | NM | 19600 | 1 | | | | 20 | NM | 86.0 | NM | 19600 | 2 | | | | 30 | NM | NM | NM | 19600 | 4 | | | | 60 | | 83.6 | 320 | 19600 | 7 | | | | 120 | NM | 76.4 | NM | 19600 | 14 | | | | 360 | NM | 76.6 | NM | 19600 | 42 | | | | 1440 | | 77.0 | 570 | 19600 | 169 | | | | 40 | NIM | 70.2 | NIM | 178400 | 11 | | | 30 | 10 | NM | 79.3 | NM | 176400 | 21 | | | | 20 | 2.1E+04 | 83.8
84.1 | 1460 | 176400 | 32 | | | | 30 | | 83.0 | 1020
1250 | 176400 | 64 | | | | 60 | 1.8E+04
4.7E+04 | 83.5 | 3360 | 176400 | 127 | | | | | 8.6E+04 | 86.8 | 6140 | 176400 | 381 | | | | | 1.0E+05 | 85.9 | 7210 | 176400 | | | | | 1440 | 1.02+03 | 00.0 | 1210 | 170400 | 1027 | | | 55 | 10 | 3.0E+04 | 80.6 | 2130 | 592900 | 36 | | | | 20 | 5.8E+04 | 90.0 | 4110 | 592900 | 71 | | | | 30 | | 90.2 | 4110 | 592900 | 107 | | | | 60 | | 89.4 | 13180 | 592900 | 213 | | | | 120 | | 90.9 | 13360 | 592900 | 427 | | | | 360 | | 89.1 | 12640 | 592900 | 1281 | | | | 1440 | 2.0E+05 | 87.3 | 14110 | 592900 | 5123 | | Green (| Canvon 65. | 7.7% weat | hered | | | | | | | 10 | | INTERNATION OF THE
PARTY | 62.8 | 20 | 19600 | 1 | | | | 20 | | 73.2 | 40 | 19600 | 2 | | | | 30 | 2.8E+04 | 74.1 | 60 | 19600 | 4 | | | | 60 | 4.5E+04 | 83.1 | 100 | 19600 | 7 | | | | 120 | 5.0E+04 | 80.5 | 110 | 19600 | 14 | | | | 360 | 7.0E+04 | 82.7 | 150 | 19600 | 42 | | | | 1440 | 1.1E+05 | 86.6 | 240 | 19600 | 169 | | | 30 | 10 | 1.1E+04 | 53.0 | 20 | 176400 | 11 | | | | | 2.0E+04 | 70.2 | 40 | 176400 | 21 | | | | 30 | | NM | NM | 176400 | 32 | | | | 60 | | 70.3 | 70 | 176400 | 64 | | | | 120 | | 72.4 | 100 | 176400 | 127 | | | | | 3.9E+04 | 69.6 | 90 | 176400 | 381 | | | | | 3.5E+04 | 62.2 | 80 | 176400 | 1524 | | | 55 | 10 | 1.3E+04 | 62.6 | 30 | 592900 | 36 | | | 30 | | 2.0E+04 | 58.6 | 40 | 592900 | 71 | | | | 30 | | 61.9 | 50 | 592900 | 107 | | | | 60 | | 59.7 | 80 | 592900 | 213 | | | | 120 | | 52.7 | 30 | 592900 | 427 | | | | 360 | | 56.4 | 50 | 592900 | 1281 | | | | 1440 | | 63.4 | 40 | 592900 | 5123 | ANT NAMED OF STREET OF STREET | Table 1 Oil | Mixing
Energy | Time | of Kinetic
Complex
Modulus | Water | Stabilit | Energy | Work | |-------------|------------------|--------------|----------------------------------|---------|--------------------|--------|------------------------------| | | rpm | | (mPa) | (% w/w) | (s ⁻¹) | (ergs) | (J.s) | | Sockeye | Sweet 1 | 7% weather | rad | | | | | | | 10 | | 8.2E+03 | 67.7 | 80 | 19600 | 1 | | | | 20 | 1.2E+04 | 72.4 | 110 | 19600 | 2 | | | | 30 | 2.0E+04 | 76.9 | 200 | 19600 | 4 | | | | 60 | 4.4E+04 | 88.9 | 420 | 19600 | 7 | | | | 120 | | 90.3 | 620 | 19600 | 14 | | | | 360 | | 91.5 | 870 | 19600 | 42 | | | | 1440 | 1.0E+05 | 95.2 | 1000 | 19600 | 169 | | | 30 | 10 | 1.1E+04 | 64.3 | 110 | 176400 | 11 | | | | | 2.1E+04 | 75.7 | 210 | 176400 | 21 | | | | | 2.9E+04 | 76.6 | 280 | 176400 | 32 | | | | | 4.1E+04 | 79.7 | 400 | 176400 | 64 | | | | | 8.0E+04 | 87.7 | 780 | 176400 | and the second second second | | | | | 9.0E+04 | 90.1 | 870 | 176400 | 381 | | | | 1440 | 9.4E+04 | 93.0 | 910 | 176400 | 1524 | | | 55 | 10 | 3.8E+04 | 78.2 | 370 | 592900 | 36 | | | | 20 | 5.4E+04 | 79.2 | 520 | 592900 | 71 | | | | 30 | 6.2E+04 | 82.4 | 600 | 592900 | 107 | | | | 60 | 7.8E+04 | 82.8 | 750 | 592900 | 213 | | | | 120 | 9.0E+04 | 81.0 | 870 | 592900 | 427 | | | | 360 | 9.0E+04 | 80.4 | 870 | 592900 | 1281 | | | | 1440 | 8.4E+04 | 83.8 | 820 | 592900 | 5123 | | Bunker C | (1987) | | | | | | | | | 10 | 10 | NM | 2.3 | NM | 19600 | 1 | | | | 20 | NM | 3.2 | NM | 19600 | 2 | | | | 30 | NM | 2.6 | NM | 19600 | 4 | | | | 60 | NM | 6.8 | NM | 19600 | 7 | | | | 120 | NM | 6.3 | NM | 19600 | 14 | | | | 360 | NM | 9.6 | NM | 19600 | 42 | | | | 1440 | 4.5E+05 | 31.9 | 10 | 19600 | 169 | | | 30 | | 4.5E+05 | 4.4 | | 176400 | 11 | | | | 20 | NM | 4.1 | | 176400 | 21 | | | | 30 | NM | 9.4 | | 176400 | 32 | | | | 60 | NM | 8.9 | | 176400 | 64 | | | | | 3.8E+05 | 12.4 | | 176400 | 127 | | | | | 4.0E+05 | 20.6 | | 176400 | 381 | | | | 1440 5 | 5.5 E+ 05 | 36.7 | 10 | 176400 | 1524 | | | 55 | | .5E+05 | 5.7 | | 592900 | 36 | | | | 20 | NM | 4.2 | | 592900 | 71 | | | | 30 | NM | NM | | 592900 | 107 | | | | 60 | NM | 5.8 | | 592900 | 213 | | | | 120
360 3 | NM
OF+05 | 5.8 | | 592900 | 427 | | | | | 3.9E+05 | 12.0 | | 592900 | 1281 | | | | 1440 0 | 6.2E+05 | 24.7 | 10 ! | 592900 | 5123 | # Table 2 # General Observations of the Emulsion Formation Over Time at Three Rates of Mixing ## Stable Emulsions Sockeye 55 RPM 30 RPM The oil rapidly emulsified and attained elastic properties in less than five minutes. By 30 minutes, it was characterized by a pasty quality, turning to a reddish brown by 60 minutes. At the 6 hour mark, it was a lighter brown and was segregating into smaller clumps. By 24 hours the mass consisted of small (about 1 cm), semi-solid pellets. The emulsion formed at the 10 minute observation time consisted of large water droplets surrounded by a web of emulsion, described here as "coarse" emulsion due to its wide range of particle size distribution up to 3 mm diameter size. This quickly changed by the 20 minute mark to demonstrate more elastic properties. The colour was lighter at 30 minutes, and the emulsion resided primarily on the vessel walls. At 2 hours, the there were small batches of emulsion in the water. The completion of the experiment at 24 hours revealed a mix of light reddish brown emulsion in the water, and darker patches of emulsion on the walls. 10 RPM A coarse emulsion, as described above, formed within 10 minutes. Elasticity was observed at 30 minutes. By 60 minutes the emulsion was chocolate brown, moderately stable with some water resolution. The colour was lighter at 6 hours, and by the end of the 24 hour period there was a ball of light brown semi-solid emulsion in the water, with dark smears of emulsion on the walls. Point Arguello Light 55 RPM The oil rapidly emulsified and attained elastic properties in less than 10 minutes, becoming pasty in quality. This appeared essentially the same for the first 2 hours, becoming lighter in colour at the 6 hour mark, and at the end of the experiment. The changes in appearance were only small. **30 RPM** The emulsion formed at the 10 minute observation time was coarse, as described above. There was water resolved to yield foam over water. The emulsion improved until at 30 minutes it possessed a pasty quality. The colour became lighter by the 6 hour observation, and ended essentially the same in appearance. 10 RPM The coarse emulsion generated at the 10 minute observation point rapidly resolved to water. The droplet size visibly decreases by the 30 minute mark, but still resolves water. At 60 minutes, all water was trapped into the emulsion, with no excess water present in the vessel. By the end of the experiment, excess water had reappeared in small quantity - perhaps 100 of the original 600 mL - but the appearance of the emulsion had not changed except for a lighter brown colour. # **Emulsions Difficult to Classify** Arabian Light 55 RPM The initial observation at 10 minutes revealed a very fluid, coarse black emulsion. The colour lightened by the 20 minute point, and became more elastic at 30 minutes. The emulsion was distributed about the walls, very #### Table 2 - continued little in the water. At 60 minutes the reddish brown colour had appeared, and remained essentially the same to the end. There was some water resolution from the emulsion at all sampling times, but the character of the emulsion that remains did not appear to change with the water loss. The second experiment under the same conditions was essentially the same until the final observation and sampling, at which point the emulsion was darker and seemed more fluid, qualitatively indicating a stability reversal. The measurements indicated similar complex modulus to the first experiment, but the water content had decreased. It had been observed in the past that Arabian Light can have dramatically different results between runs under the same test conditions, in those instances over a 12 hour mixing time. It would appear that there was an as yet unidentified process that was causing these variances. 30 RPM The first observation at 10 minutes revealed a coarse emulsion that quickly broke to rag. This was the observed up until the 2 hour point, when the coarse emulsion decays to water and emulsion. At the end of experimentation, the emulsion was a dark brown but water was still gradually resolved. The second experiment under the same conditions showed essentially the same results up to the 2 hour mark, at which point the emulsion seemed to reverse, completely breaking by the end of the experiment. This appeared similar to, yet more dramatic, than the 55 RPM run. 10 RPM The emulsion formed was essentially the same throughout the experiment, not changing from a coarse black emulsion that quickly resolved water, leaving rag over a layer of water. #### Meso-stable Emulsions Green Canyon 7.7% (w/w) weathered 55 RPM The emulsion formed was smeared on the walls, this was generally a coarse emulsion, decaying to water and emulsion. By 1 hour, there was a brownish colouration, but at the 2 hour observation point, the emulsion appears "fatigued". The emulsion had lost its ability to retain the large droplets characteristic of the coarse emulsion initially formed. The emulsion was mostly at the water surface, very little on the vessel walls. By 6 hours it was obvious that the emulsified layer on the surface was coming from droplets in the water. The system was a water-in-oil-in-water (w/o/w) emulsion. The analysis supports these observations, as the peak in the complex modulus was reached at the 1 hour sampling time, and drops thereafter. There was not a huge magnitude change in the complex modulus from the 10 minute to 60 minute to 2 hour fluctuation, but was lends support to the qualitative changes noted. 30 RPM The coarse emulsion that was formed up to the 60 minute mark, had rapid resolution of water. At 60 minutes there was a brownish colouration to the emulsion smeared on the walls. By 2 hours, the emulsion on the walls was becoming pasty. At 6 hours there was a divergence by distribution, with the emulsion on the walls being a pasty smear, while the emulsion in the water can be characterized as a w/o/w emulsion. By the end of the experiment, all the emulsion resides in the water column as a w/o/w emulsion. 10 RPM The initial observation at 10 minutes revealed a coarse mixture smeared on the vessel walls. This was consistent until the 1 hour observation, at which point the emulsion had a brown colouration, and appeared thicker and more elastic. This was maintained until the end. At all sampling times, the emulsion decayed to water and emulsion upon standing. Sockeve Sweet 17.7% (w/w) weathered 55 RPM The emulsion formed was smeared on the walls, this was generally a coarse mixture, decaying to water and rag. By 30 minutes, there was a brownish colouration, but at the 2 hour observation point, the emulsion appeared "fatigued". The emulsion had lost
its ability to retain the large droplets characteristic of the coarse emulsion initially formed. The emulsion was mostly in the water, very little on the vessel walls. By 6 hours it was obvious that the emulsified layer on the surface was coming from droplets in the water. The system was a water-in-oil-in-water (w/o/w) emulsion. The complex modulus did not change throughout this transition, indicating the water-in-oil emulsion in the water was not undergoing further change. 30 RPM The initial observation at 10 minutes revealed a coarse emulsion smeared on the vessel walls. Beyond 60 minutes, the emulsion appears to become more elastic, although there was decay of the emulsion to water and emulsion at all sampling times. 10 RPM The emulsion formed was smeared on the walls, this was generally a coarse mixture. By the 60 minute observation, it had become more elastic, appearing like a meringue. At the 2 hour mark, all water was entrapped in the emulsion. This remains the same to the end of the experiment. At all sampling times, there was water resolved from the emulsion. ### **Entrained Water** Bunker C All RPM A 60 mL sam deplete the su the visual cha A 60 mL sample was used for this oil, as the sampling regime would quickly deplete the supply due to the low water content of the samples. In all cases, the visual character of the sample did not change from the beginning to the 6 hour observation point. At the end of the experiments, there was a slight change in the malleability of the sample, as it was easier to cleave rather than spread like taffy. Figure 2 Stability versus Work for Six Oils Figure 3 Stability versus Energy for Sockeye stability was found to correlate very highly with other indices related to the formation of emulsions. Figure 2 corresponds to the previous figure in a paper one year ago, where only energy was varied (Fingas et al., 1999). Because the time was not varied in the previous year's study, the energy was equivalent to the work applied to the oil. Thus essentially the same result was obtained. Figure 3 shows the result of plotting the stability versus the energy. Only a scatter of points is obtained along a given energy level. Figure 3 was drawn using the data from Table 1 for Sockeye oil. Figure 4 shows the same data, however, stability is plotted against work. Figure 4 clearly shows the consistent relationship between stability and work. It is still clear, however, that a minimum energy level is necessary to produce the emulsion in the first instance. Increasing work then increases the stability of the emulsion, past the point of initiation. This effect can be seen especially in Arabian Light oil in Table 1. At the lowest energy level of 10 rpm, the complex modulus is too low to be measured in most instances and no increase with the amount of work is seen. At 55 rpm, the stability of the water-in-oil increases as work increases. In the second part of the study, the emulsions formed during a study one year ago were re-analyzed to determine whether or not the parameters are the same one year later. The data from this study are given in Table 3. The differences in the stability between the one-week time and the one-year time are highlighted. These differences are generally within 10%, but for some mixtures can be significantly greater. The stability of the emulsions one week after the time of formation is shown in Figure 5. Figure 6 shows the corresponding values one year later. As can be seen from these figures, the situation with the emulsions remains relatively the same. Stable emulsions remain stable emulsions and so on. The emulsions or water-in-oil states lose water and some stability over the year, but do not change state. Arabian Light emulsion loses enough stability that it may be unstable after one year. This is the only oil that showed this effect. #### 5.0 Conclusions Four, clearly-defined states of water-in-oil have been shown to be defined by a number of measurements and by their visual appearance, both on the day of formation and one week later and now, one year later. This study shows that the energy to the onset of the three states known as stable, meso-stable and entrained water, is very low, 300 to about 1500 ergs, corresponding to a rotational rate in the formation apparatus of about 1 to 3 rpm. Turbulent energy could not be measured. Work was varied from 1 to 5123 J.s. It was found that although a minimum energy threshold is necessary for most emulsion formation, that only work correlates with the value of stability. This has clear implications for the formation of emulsions at sea, where a given energy level corresponding to turbulent energy at sea would sometimes require a period of time before a given water-in-oil state would be produced. Importantly, the work (energy expended over time) correlates most closely with the stability of the emulsion or water-in-oil state. It has also been noted that there is a progression in the formation of the emulsions. At the onset of agitation, a coarse mixture appearing like a sponge, is formed. If a stable emulsion will be formed, this occurs quickly and never reverts, at least not with the oils in this study. A meso-stable emulsion will form after about 20 | Table 3 | Results of Americ Studies | | | Properties at Formation | Mon | | | | Properties One Year Later | ar Later | THE RESIDENCE OF | Collins and Collins | | | |----------------|---------------------------|--------|------------------|-------------------------|--------|-----------|---------|-----------|---------------------------|------------------|---------------------|---------------------|----------------------|-----------| | 10 | RPIM | Energy | Visual | Complex Modulus | H20 | Viscosity | ity | Stability | Stability Complex Modulus | H ₂ 0 | Viscosity Stability | Stability | Stability | ō | | | | SELIE | Stability | mPa | %(w/w) | RV20 | RS100 | | mPa | %(w/w) | RV20 | .8 | Difference Viscosity | Viscosity | | Arabian Light | 0. | 200 | Unstable | | | | | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 14 | | Arabian Light | - | 330 | Unstable | | | | | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 7 | | Amphigo Light | 2.8 | 1540 | Instahla | | | | | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 14 | | Arablan Light | 3.5 | 1880 | Instahla | | | | | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 14 | | Arabian Light | | 5100 | Stable | 4.0E+04 | 84.73 | 4.9E+03 | 5.5E+03 | 6.7E+03 | 5.8E+03 | 0.58 | 3.5E+03 | 4.1E+02 | -6.3E+03 | 7 | | Arabian Light | 5.3 | 5510 | Stable | 8.2E+03 | 81.82 | | 1.5E+03 | 1.4E+03 | 2.1E+03 | 2.29 | 4.4E+03 | 1,5E+02 | -1.2E+03 | 14 | | Arabian Light | 10.3 | 20790 | Stable | 1.5E+04 | 85.60 | 7.0E+03 4 | 4.2E+03 | 2.5E+03 | 5.5E+04 | 81.35 | 1.4E+04 | 3.9E+03 | 1.4E+03 | 4 | | Arabian Light | 10.5 | 21610 | Stable | 2.4E+05 | B0.31 | | 1.1E+03 | 4.0E+04 | 6.1E+04 | 34.98 | 5.1E+03 | 4.4E+03 | -3.6E+04 | 7 | | Arabian Light | 20.4 | 81570 | Stable | 2.5E+05 | 93.22 | 5.9E+04 | | 4.1E+04 | 2.1E+03 | 0.27 | 4.9E+03 | 1.5E+02 | 4.1E+04 | 14 | | Arabian Light | 21.0 | 86440 | Stable | 8.3E+04 | 85.06 | | 1.2E+04 | 1.4E+04 | 1.1E+05 | 80.47 | 1.9E+04 | 7.6E+03 | -6.2E+03 | 7 | | Arabian Light | 29.8 | 174060 | Stable | 3.1E+05 | 92.3 | | 4.0E+04 | 5.2E+04 | 2.9E+04 | 73.08 | 1.7E+04 | 2.0E+03 | -5.0E+04 | 4 | | Arabian (lohi | 29.8 | 174080 | Stable | 3.3E+05 | 92.56 | 6.0E+04 | 5.0E+04 | 5.5E+04 | 1.1E+05 | 80.71 | 2.6E+04 | 8.1E+03 | 4.7E+04 | 14 | | Arabian I loht | 30.8 | 310470 | Stable | 7.9E+05 | 91.58 | 9.1E+04 | | 1.3E+05 | | | | 0.0E+00 | -1.3E+05 | 14 | | Arabian Light | 39.8 | 310470 | Stable | 6.6E+05 | 90.73 | 1.0E+05 | | 1.1E+05 | | | | 0.0E+00 | -1.1E+05 | 14 | | Arabian Light | 40.3 | 318320 | | 3.0E+05 | 95.06 | | 7.0E+04 | 4.9E+04 | 1.4E+05 | 81.16 | 2.4E+04 | 9.8E+03 | | 14 | | Arahian I Inht | 418 | 342460 | | 8.2E+05 | 90.4 | | 3.0E+04 | 1.4E+05 | 6.7E+04 | 80.39 | 1.9E+04 | 4.8E+03 | | 14 | | Arabian Light | 55 | 592900 | Stable | 9.4E+05 | 88.71 | 1.4E+05 | 5.0E+04 | 1.6E+05 | 2.0E+05 | 79.51 | 2.5E+04 | 1.4E+04 | | 7 | | BunkerC | 1.0 | 200 | ш | | 46.83 | | 6.5E+04 | 3.7E+04 | 2.5E+05 | 21.87 | 1.0E+05 | 1.0E+01 | | 45030 | | Bunkar C | 13 | 330 | Ø. | | 49.91 | 9.7E+04 | 9.0E+04 | 4.0E+04 | 4.4E+05 | 55.72 | 1.8E+05 | Т | • | 45030 | | Bunker | 2.8 | 1540 | | | 58.22 | | 1.2E+05 | 6.0E+04 | 5.2E+05 | 57.81 | 2.1E+05 | - | | 45030 | | Runker C | 3.1 | 1880 | | | 61.72 | 1.5E+05 | 1.3E+05 | | 5.2E+05 | 64.14 | 1.9E+05 | • | | 45030 | | Bunkar C | 5.1 | 5100 | | | 80.32 | 1.7E+05 | 1.3E+05 | 8.7E+04 | 5.8E+05 | 61.86 | 2.4E+05 | | | 42030 | | Bunker C | 5.3 | 5510 | | | 62.96 | | 1.3E+05 | | 6.2E+05 | 63.32 | 2.5E+05 | 1.0E+01 | | 45030 | | Bunker C | 10.3 | 20790 | | | 49.91 | 1.2E+05 | 1.0E+05 | 4.8E+04 | 4.8E+05 | 56.49 | 1.9E+05 | 1.0E+01 | | 45030 | | Bunker C | 10.5 | 21610 | Entrained | - | 54.71 | | 1.3E+05 | 6.0E+04 | 5.6E+05 | 64,59 | 2.3E+05 | 1.0E+01 | | 45030 | | Bunker C | 20.4 | 81570 | Entrained | | 64.80 | 1.7E+05 | | 8.5E+04 | 7.1E+05 | 62.46 | 2.3E+05 | | | 45030 | | BunkerC | 21.0 | 86440 | Entrained | d 4.5E+05 | 54.16 | | 1.2E+05 | 7.5E+04 | 5.3E+06 | 54.39 | 3.0E+05 | | | 45030 | | Bunker C | 29.8 | 174080 | | | 48.89 | | 9.5E+04 | 5.7E+04 | 4.7E+05 | 48.62 | 1.3E+05 | | | 45030 | | BunkerC | 29.8 | 174060 | Entrained | d 3.5E+05 | 45.82 | 9.1E+04 | 8.5E+04 | 5.8E+04 | 4.7E+05 | 49.03 | 1.8E+05 | | | 42030 | | BunkerC | 40.3 | 318320 | | d 3.8E+05 | 49.18 | 1.1E+05 | 9.5E+04 | 6.3E+04 | 5.4E+05 | 54.25 | 2.2E+05 | | • | 45030 | | BunkerC | 41.8 | 342460 | | | 47.46 | | 1.1E+05 | 0.0E+00 | 5.7E+05 | 56.41 | 2.0E+05 | Т | | 45030 | | BunkerC | 55 | 592900 | | d 3.9E+05 | 49.27 | 1.1E+05 | 1.1E+05 | | 7.4E+05 | 45.58 | 2.5E+05 | | | 45030 | | Prudhoe Bay | 1.0 | 200 | Unstable | | | | | 0.0E+00 | | | | 0.0E+00 | | 006 | | Prudhoe Bay | 1.3 | 330 | Unstable | | | | | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 008 | | Table 3 | Kesuit | of Kinet | Results of Kinetic Studies | Properties at Formation | Mon | | | 2 | Properties One Year
Later | ar Late | | | | | |--------------|--------|----------|----------------------------|-------------------------|--------|------------|-----------|-------------|--|---------|---------------------|-----------|----------------------|---------| | ã | RPM | Energy | Visual | Complex Modulus | H20 | Viscosity | | tability Co | Stability Complex Modulus H ₂ O | 02H 4 | Viscosity Stability | Stability | Stability | IIO | | | | ergs | Stability | mPa | (w/w)% | RV20 R | RS100 | -00 | mPa | (m/m)% | RV20 | | Difference Viscosity | scosity | | Prudhoe Bay | 2.8 | 1540 | 1540 Unstable | | | | 0 | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 006 | | Prudhoe Bay | 3.1 | 1880 | Unstable | | | | 0 | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 006 | | Prudhoe Bay | 5.1 | 5100 | Unstable | | | | 0 | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 006 | | Prudhoe Bay | 5.3 | 5510 | Unstable | | | | • | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 900 | | Prudhoe Bay | 10.3 | 20790 | 9 1050 | | | | 0 | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 006 | | Prudhoe Bay | 10.5 | 21610 | Unstable | | | | - | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 006 | | Prudhoe Bay | 20.4 | 81570 | | | | | 0 | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 900 | | Prudhoe Bay | 21.0 | 86440 | Unstable | | | | • | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 006 | | Prudhoe Bay | 29.8 | 174060 | Unstable | | | | 0 | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 006 | | Prudhoe Bay | 29.8 | 174060 | Unstable | | | | 0 | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 900 | | Prudhoe Bay | 40.3 | 318320 | Meso | 8.8E+03 | 28.49 | 5.1E+03 | - | 1.5E+03 | 4.0E+03 | 16.23 | 6.0E+03 | 0.0E+00 | -1.5E+03 | 006 | | Prudhoe Bay | 41.8 | 342460 | Meso | 8.2E+03 | 72.52 | - | 1.3E+03 1 | 1.4E+03 | 3.8E+03 | 14.94 | 4.7E+03 | 0.0E+00 | -1.4E+03 | 006 | | Prudhoe Bay | 99 | 592900 | Meso | 4.2E+03 | 55.81 | 6.7E+03 4. | 4.0E+02 7 | 7.0E+02 | 2.7E+04 | 37.35 | | 3.0E+01 | -6.7E+02 | 006 | | Sockeye | 1.0 | 200 | Unstable | | | | 0 | 0.0E+00 | | | | 0.0E+00 | 0.0E+00 | 45 | | Sockeye | 1.3 | 330 | Stable | 1.4E+04 | 82.39 | 7.6E+03 3. | | 2.3E+03 | 1.3E+05 | 69.48 | | 2.8E+03 | 4.5E+02 | 45 | | Sockeye | 2.8 | 1540 | Stable | 1.7E+05 | 89.45 | | | 2.8E+04 | 2.0E+05 | 80.57 | | 4.4E+03 | -2.4E+04 | 45 | | Sockeye | 3.1 | 1880 | Stable | 2.1E+05 | 90.92 | 2.7E+04 2. | | 3.5E+04 | 3.5E+05 | 80.69 | | 7.8E+03 | -2.7E+04 | 45 | | Sockeye | 5.1 | 5100 | Stable | 3.9E+05 | 92.60 | 5.4E+04 7. | | 6.5E+04 | 3.3E+05 | 80.59 | _ | 7.2E+03 | -5.8E+04 | 45 | | Sockeye | 5.3 | 5510 | Stable | 3.6E+05 | 92.50 | ici | | 6.0E+04 | 3.6E+05 | 81.71 | | 7.9E+03 | -5.2E+04 | 45 | | Sockeye | 10,3 | 20790 | Stable | 1,5E+06 | 90.57 | 4.0E+05 3. | 3.0E+05 2 | 2.5E+05 | 1.5E+06 | 81.38 | | 3.2E+04 | -2.2E+05 | 45 | | Sockeye | 10.5 | 21610 | Stable | 1.8E+06 | 99.06 | | 2.8E+05 | 3.0E+05 | 1.5E+06 | 81.41 | 3.1E+05 | 3.2E+04 | -2.7E+05 | 45 | | Sockeye | 20.4 | 81570 | Stable | 8.3E+05 | 92.03 | 2,3E+05 | | 1.4E+05 | 1.1E+06 | 81.48 | 2.2E+05 | 2.4E+04 | -1.1E+05 | 45 | | Sockeye | 20.7 | 83980 | Stable | 1.2E+08 | 90.51 | 2.8E+05 | | 2.0E+05 | | | | 0.0E+00 | -2.0E+05 | 45 | | Sockeye | 20.7 | 83980 | Stable | 7.6E+05 | 91.23 | 2.1E+05 | | 1.3E+05 | | | | 0.0E+00 | -1.3E+05 | 45 | | Sockeye | 21.0 | 86440 | Stable | 8.7E+05 | 91.31 | 7 | 1.6E+05 | 1.5E+05 | 7.7E+05 | 80.88 | 1.7E+05 | 1.7E+04 | -1.3E+05 | 45 | | Sockeye | 29.8 | 174060 | Stable | 2.8E+06 | 89.12 | 3. | 3.5E+05 4 | 1.7E+05 | 2.0E+06 | 81.48 | 5.2E+05 | 4.3E+04 | 4.2E+05 | 45 | | Sockeye | 29.8 | 174060 | Stable | 3.0E+06 | 88.17 | 6.6E+05 5. | 5.0E+05 | 5.0E+05 | 2,3E+06 | 82.38 | 4.5E+05 | 5.1E+04 | -4.5E+05 | 45 | | Sockeye | 40.3 | 318320 | Stable | 3.6E+06 | 98.95 | 9.2E+05 3. | 3.0E+05 (| 6.0E+05 | 2.3E+06 | 83.49 | 4.4E+05 | 5.1E+04 | -5.5E+05 | 45 | | Sockeye | 41.8 | 342460 | Stable | 3.4E+06 | 87.95 | 4 | 4.0E+05 | 5.7E+05 | 2.6E+06 | 83.69 | 4.7E+05 | 5.7E+04 | -5.1E+05 | 45 | | Sockaye | 55 | 592900 | Stable | 4.1E+06 | 86.44 | 7.6E+05 5. | 5.8E+05 (| 6.8E+05 | 3.3E+06 | 80.22 | 7.7E+05 | 7.3E+04 | -6.0E+05 | 45 | | Sockeve 1:30 | 3.1 | | Stable | 3.9E+05 | 91.99 | 1.0E+05 7. | 7.5E+04 | | 5.5E+05 | 78.12 | 7.6E+04 | | | | | Sockeye 1:30 | 5.1 | | Stable | Ī | 92.15 | | 1.5E+05 | | 1.2E+06 | 79.76 | P.34/36 Figure 4 Stability versus Work for Sockeye Figure 5 Stability versus Energy for Four Oils minutes of agitation at low energy. In some cases, the meso-stable emulsion can change to a 3-way, water-in-oil-in water emulsion. Most often a meso-emulsion would remain as meso-stable. The coarse mixture usually remains as such until mixing ceases, however, in the case of some oils it also forms a 3-way emulsion. The possible pathways and approximate timing are illustrated in Figure 7. #### 6.0 References Fingas, M.F., B. Fieldhouse and J.V. Mullin, "Studies of Water-in-Oil Emulsions: Energy Threshold of Emulsion Formation", in *Proceedings of the Twenty-Second Arctic and Marine Oil Spill Program Technical Seminar*, Environment Canada, Ottawa, Ontario, pp. 57-68, 1999. Jokuty, P., S. Whiticar, Z. Wang, M.F. Fingas, B. Fieldhouse, P. Lambert and J. Mullin, *Properties of Crude Oils and Oil Products*, (Volume 1, A-K; Volume 2, L-Z), Environment Canada Manuscript Report Number EE-165, Ottawa, Ontario, 1999. McLean, J.D. and P.K. Kilpatrick, "Effects of Asphaltene Solvency on Stability of Water-in-Oil Emulsions", Journal of Colloid and Interface Science, Vol. 189, pp. 242-253, 1997a. McLean, J.D. and P.K. Kilpatrick, "Effects of Asphaltene Aggregation in Model Heptane-Toluene Mixtures on Stability of Water-in-Oil Emulsions", *Journal of Colloid and Interface Science*, Vol. 196, pp. 23-34, 1997b. Sjöblom, J., and H. Førdedal, "Flocculation and Coalesence in Emulsions as Studied by Dielectric Spectroscopy", in *Emulsions and Emulsion Stability*, ed. Johan Sjöblom, Marcel Dekker, New York, pp. 393-435, 1996. Figure 6 Stability versus Energy for Four Oils After One Year Figure 7 The Overall Concept of State and Approximate Kinetics in Emulsion and Water-in-oil State Formation